Rockefeller University study: Two neurotransmitters in brain region influence nicotine dependence

in the press


stateside one worldPart of the reason people find smoking difficult to quit is that each time they have a cigarette, feelings of craving, irritability, and anxiety melt away. This component of addiction is known as negative reward and is controlled in part by the region of the brain called the habenula. The neurotransmitters acetylcholine and glutamate are thought to influence nicotine dependence in the habenula, but the molecular details of this regulation are unclear. Ibanez-Tallon and colleagues report that acetylcholine regulates glutamate signaling, identifying a new mechanism important for nicotine dependence. The study was published on in eLife.
“We knew that both of these neurotransmitters played important roles in neurons in the habenula” says Ines Ibanez-Tallon, Research Associate Professor in the Laboratory of Molecular Biology, headed by James and Marilyn Simons Professor Nathaniel Heintz. “What we didn’t know was how they interact, or work together to reinforce addiction.”

Neurotransmitter control

Neurotransmitters, chemical messengers of the brain, are packaged into spherical structures called vesicles, which reside at the ends of neurons. Upon receiving certain signals, neurons release their vesicle contents into the synapse, perpetuating the signal onto the next neuron. Neurons can recycle neurotransmitters by reabsorbing them through re-uptake, a process that allows them to precisely control the amounts of neurotransmitters in the synapse. Even a small upset in the balance of neurotransmitters can result in altered behavior. With acetylcholine, it can influence our ability to cope with addiction.


“We created a mouse model whose habenular neurons don’t make acetylcholine, the mice lack a key gene involved in acetylcholine processing” says Ibanez-Tallon. “In our experiments, we observed that the elimination of acetylcholine affected glutamate in this brain region in two ways. First, the amount of glutamate released by neurons was reduced. Second, the re-uptake of glutamate back into vesicles was impaired. These mechanisms affect the excitability of neurons, meaning normal signalling is disrupted.” Based on these findings, the researchers suggest that acetylcholine regulates how much glutamate is released into the synapse and at what frequency. It also facilitates the packaging of glutamate into vesicles. Studies using electron microscopy confirmed that the neurotransmitters are in the same place at the same time and are able to affect one another.

How does this affect behavior?

Behaviourally, removing acetylcholine from the habenula caused the mice to become insensitive to the rewarding properties of nicotine and they did not develop a tolerance to continued nicotine exposure. These mice did not experience withdrawal symptoms, such as body shakes and scratching. These findings and others indicate that without acetylcholine, nicotine addiction would not occur. Although smoking rates have decreased in recent years, there’s a consistent portion of the population that continues to smoke and a need for research into tobacco addiction. This study helps us understand a bit more about the brain circuitry involved in this dependence, which is also relevant to opioid and cannabinoid addiction. Read full article


The Rockefeller University (02 December 2015) Study reveals new mechanism in nicotine addiction [press release]. Retrieved from

Drop Dr B' your thoughts

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s